3x^2+20x=62

Simple and best practice solution for 3x^2+20x=62 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+20x=62 equation:



3x^2+20x=62
We move all terms to the left:
3x^2+20x-(62)=0
a = 3; b = 20; c = -62;
Δ = b2-4ac
Δ = 202-4·3·(-62)
Δ = 1144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1144}=\sqrt{4*286}=\sqrt{4}*\sqrt{286}=2\sqrt{286}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{286}}{2*3}=\frac{-20-2\sqrt{286}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{286}}{2*3}=\frac{-20+2\sqrt{286}}{6} $

See similar equations:

| 6y-2=9y-8 | | 6x-x-5x=0 | | 300+0.14x=200+.025x.011=100 | | 2x+2(2x+50)=660 | | -12+2x=-(x+(x+3 | | 10•y=6.7236 | | 3/x-4=2/x-3+8/x^2-7x+12 | | (19x-11)=0 | | 6x-2(-3)=24 | | 9x+13=8x+4 | | 6(1)-2y=24 | | 2c+1/7=3 | | 8(x-4)=2(2x+12) | | 51-3x=51-3x | | 2.666x^2-4.666x+1=0 | | 8/3x^2-14x+1=0 | | 2^2x-7=216 | | 48x^2-54x=44 | | 12x÷6=24 | | r-1/3=1/3 | | 12=(x/(40+2x)) | | 9.3-0.7=p | | v-6=6/7 | | 1/10+w=3 | | 2(1+5m)+7(5-3m)=-18 | | 5/8+t=6 | | 1/3+h=2/3 | | 2b+10=14 | | 1.2/4=w | | (630/90)/v=1 | | -7(r-2)+5(r-2)=14 | | -9x+28=-5x-8 |

Equations solver categories